桥梁JPZ盆式固定橡胶支座常用规格广东十一选五

减少了锚固组件尺寸,降低了支座重量。

该桥的抗震计算采用同济大学土木工程防灾国家重点实验室桥梁抗震学科组编制的程序NSRAP进行。

(2)确定的厚度,橡胶支座梁因温度变化和其他因素,预计将产生最大纵向水平位移是通过橡胶板剪切变形的。总厚度和横向位移之间满足下列关系:的作用是什么problems1,桥梁橡胶支座?2,橡胶轴承的结构和工作机理是什么?

JPZ盆式橡胶支座位移:

在TPZ15000-ZX盆式橡胶支座的上顶板和下底盆之间加设两块钢挡板。钢挡板上部与顶板之间以高强螺栓连接,下部与底盆之间以三面围焊焊缝相连。钢挡板的圆弧面与支座钢盆紧贴,外测±100mm设抗震挡块。纵桥向的约束力由钢挡板和高强螺栓共同提供,螺栓被剪断以后,由抗震挡块来控制顶板和底盆之间的相对位移。

(1)盆式支座下面应设置支承垫石,支承垫石混凝土强度等级不宜低于C40。垫石高度应考虑 支座安装、养护和更换的方便。支承垫石及墩顶混凝土应该按JTG D62-2004的局部承压部件要求配置相应的钢筋网。墩台顶面需按锚固套筒规格、数量预留栓孔。预留栓孔的直径和深度大于套筒直径和长度50mm~60mm,中心偏差不应超过10mm。

JPZ盆式橡胶支座滑动材料采用UHMWPE改性超高分子量聚乙烯,其具有高耐磨、低摩擦、高面压的特点,UHMWPE改性超高分子量聚乙烯的采用提高了支座的设计面压,降低了支座的重量,且高耐磨的特性延长了支座使用寿命;轻量化结构设计对支座的安装、维修更换带来了极大的便利。

工程的总体造价并没有显著提高。

5,橡胶轴承的基本布局原则?≤谭≥, 全板thickness2检查橡胶轴承,挠度梁荷载挠度,梁端会出现旋转,但不允许用橡胶支座空隙现象。偏转束角,橡胶轴承表面会产生不均匀的压缩变形,端,另一端,平均压缩变形,按下列公式计算:如果结束的光束角称,根据“材料力学公式计算:>>,该橡胶支座与梁底生产部分无效,橡胶轴承是轴承的一种。这样的设计必须保证

减少支座锚固螺栓承受的剪切力,支座整体受力更加合理;

(2采用阻尼器或耗能装置,以控制由于周期延长而导致的过大的相对位移;

  (9)安装完毕检验合格后,拆除连接构件,安装防尘围板。

JPZ盆式橡胶支座利用被封闭在钢制盆腔里的橡胶块在三项受力状态下具有流体的体积不可压缩性的特点,将桥梁上部结构的荷载可靠的传递到墩台上,并实现桥梁梁端的转动;同时依靠聚四氟乙烯板与不锈钢板之间的自由滑移,来适应桥梁上部结构由于气温变化、混凝土徐变收缩等因素引起的水平位移,从而保证桥梁的使用安全。

综上所述,减隔震的基本原理为:

3,应用范围:适用于橡胶轴承力的10005000kn以上的大跨度桥梁,城市道路桥梁盆式橡胶支座。主要类型和structuresbasin式橡胶支座按其工作特性可分为固定橡胶轴承,橡胶轴承和一个可移动的单向活动三种橡胶轴承。橡胶轴承固定的板式橡胶,橡胶垫板,承压橡胶板,橡胶密封环,紧固环和橡胶轴承钢锚螺栓等部件,它主要用于承受垂直力和角度,并在桥下纵向和横向力。可移动的橡胶轴承的板式橡胶支座,橡胶垫板,承压橡胶板,橡胶密封圈,钢环箍,中间李宁板,聚四氟乙烯板,不锈钢板和橡胶支座地脚螺栓等,它是用来支持橡胶支座竖向力和角度,并能适应桥纵向和横向位移的需要。单向活动橡胶支座的结构和可移动的橡胶轴承相同,但在橡胶轴承两侧的中央槽(或设置横向限位板),限制了橡胶支座水平(或垂直)位移。固定支座。可移动的橡胶轴承纵向可移动的橡胶支座,盆式橡胶支座的板式橡胶支座、桥梁上部结构(梁)的连接,横梁运动;板式橡胶支座固结墩上,承受上部结构和力的传递到码头。橡胶轴承力特性的1,对橡胶支座的竖向力:结构的重量,车辆荷载(衡量的影响),(隆起)。

JPZ盆式橡胶支座工作原理:

对桥墩进行延性设计,将桥墩设计得具有足够的延性,在控制变形的前提下,利用塑性镇来耗能;同时由于塑性铰的出现而使结构的基本自振周期延长,从而减小了地震所产生的惯性力。

广东十一选五官网 1

梁体的竖向位移是依靠支座内橡胶板的不均匀压缩来实现的,本文不进行阐述,仅阐述平面位移体系。在一联连续梁中,为保证合理位移,必将涉及到前述述三种结构形式支座。

连续梁桥具有结构刚度大、变形小的特点,在我国有着广泛的应用。对连续梁桥的空间地震反应分析表明,由于连续梁桥一般只设置一个固定墩,在地震荷载作用下,纵桥向的地震荷载的绝大部分均由设置在固定墩上的固定支座来承受,因此,固定墩处于十分不利的受力状态。如果一味要求固定墩满足强度要求、在弹性范围内工作,不仅是不经济的,而且也没有必要。本文探讨了一种新颖的作法,即利用减隔震的基本原理,在不改变原桥梁主体结构的情况下,仅对固定支座进行适当的减隔震设计,以满足"小震不坏、中震可修、大震不倒"的设计要求。

  (8)在桥梁实行体系转换要切割临时锚固安装时,要采取隔热措施,这样可以避免损坏橡胶板和聚四氟乙烯板。

JPZ固定型盆式橡胶支座中心增设剪力卡榫与上支座板连接,采用剪力卡榫承受水平剪力,具有以下特点:

为此,我们将固定支座设计为相对固定,即在正常使用极限状态和6度地震荷载作用下,固定墩保持正常工作,承担汽车制动力和一定的地震荷载;而在超过6度地震荷载作用下,释放固定墩的顺桥向约束,使整个上部结构能够沿纵桥向滑动,从而延长了结构的自振周期,以达到减震耗能的效果。

  (4)支座安装时,支承垫石顶面应该凿毛,并用清水冲去垫石上面的杂物,待垫石表面干燥后,在锚固螺栓孔位置以外的支承垫石顶面涂满环氧砂浆调平层,支座就位后、对中并调整水平后,用垫块将支座垫起,用环氧砂浆或强度等级较高的砂浆灌注套筒周围空隙及支座底板四周未填满环氧砂浆的位置,并且将砂浆捣实,完工后应该将支座底板以外溢出的砂浆清理干净,砂浆硬化后再拆去支座垫块。

JPZ盆式橡胶支座采用高强度热轧钢或锻件,提升了支座整体受力性能和质量可靠性,同时降低了支座重量。

1.分析模型

公路桥梁盆式橡胶支座的安装步骤编辑

高强螺栓设计

  (3)活动支座在开箱后应该注意对聚四氟乙烯板和不锈钢冷轧钢板的保护,防止划伤或者有赃物附着在乙烯板和冷轧钢板的表面,并且检查5201-2硅脂是否注满。

根据前述减隔震设计思路和支座所需承受的顺桥向水平荷载,对高强螺栓进行设计。

  (2)支座运输到现场后,应该开箱检查支座各部分零件及装箱单,检查合格后再放入包装箱,安装时再开箱。

2.设计方案

(1)使用底盆上的橡胶块三的限制,获得较大的容量(2)使用中间衬聚四氟乙烯板和顶板不锈钢板低摩擦系数较大的水平位移;(3)使用锅三力弹性橡胶块均匀压缩大角度。

二、减隔震设计

建筑盆式支座@建筑盆式支座厂家@建筑盆式支座厂家批发@建筑盆式支座直销

为保证固定墩免于屈服,以固定墩屈服弯矩对应的水平剪力为设计控制值。固定墩在设计轴向荷载作用下,其屈服弯矩为125800kN·m,对应水平剪力为6524kN,每个支座需提供3262kN。采用M24,8.8级高强螺栓。

3检查橡胶轴承,滑动阻力

用改造过的TPZ15000-ZX盆式橡胶支座来替找原来的TPZ15000-GDZ盆式橡胶支座。TPZ15000-ZX盆式橡胶支座为纵向滑动支座。

广东十一选五官网 2

该连续梁桥的上部结构为两个分离的单箱单室变截面箱梁,主域处梁高4.5m,边墩及跨中的梁高均为2.0m;主墩为变截面空心柱体,边域为排架式撤柱,纵桥向两排,每排3个实心嫩柱、主梁和桥墩之间采用盆式橡胶支座连接。

3,盆式橡胶支座结构及工作原理是什么?

二、工程背景

盆式橡胶支座(Basin type rubber support)是钢构件与橡胶组合而成的新型桥梁支座,与同类的其它型号盆式支座和铸钢辊轴支座相比,具有承载能力大,水平位移量大、转动灵活等优点。

延长结构的自振周期可以有效地减小结构的地震加速度反应,从而减小结构由于地震所遭受到的地震荷载。对于桥梁结构,采用橡胶支座、聚四氟乙烯支座以及其他滑动支座即瓦达到增加结构柔性、延长结构自振周期的目的。但是,随着结构自振周期的延长,梁体与墩台之间的相对位移也同时增加。为了减小由于结构自振周期延长而增加的梁墩相对位移,可以采用增加结构阻尼的方法。加大结构的阻尼,地震引起的位移反应能得到明显的抑制[1]。

盆式支座特点编辑

1.设计思路

4,桥梁橡胶支座分为几种?

一、减隔震原理

  (5)有纵坡的桥梁,在支座顶板长度范围内的桥梁梁底,设计时应该将该部位梁底用预埋钢板调直水平,支座顶板范围内的混凝土应该按JTG D62-2004进行局部承压计算并配置相应的钢筋网。活动支座安装时应该考虑温度的变化。

在对桥梁减隔震原理进行分析的基础上,依据连续梁桥在地震作用时受力的特点,对连续梁桥的固定支座进行了减隔震设计,将原来的固定支座改为相对固定。对该桥在地震荷载作用下的抗震性能分析表明,采取V隔震措施后,固定墩的受力情况得到明显改善,主梁的纵向位移以及梁、墩的相对位移虽有所增大,但即使在8度的地震荷载作用下,位移幅度仍在支座允许的位移范围内。

  (6)双向和单向活动支座安装时,要特别注意检查聚四氟乙烯板,聚四氟乙烯板的主要滑移方向应与桥梁顺桥向相一致。

通常遇到这种情况,常采用以下解决方法:

1,(1)确定的规模,橡胶轴承,橡胶轴承平面尺寸的板式橡胶支座橡胶板平面尺寸的抗压强度与底梁和墩顶混凝土局部承压强度是由一般的橡胶轴承,抗压强度控制设计。

由验算可知,该桥在6度地震荷载作用下,固定支座已被剪坏,不能满足桥现关于"小震不坏"的设计要求。而且,固定墩在7度地震荷载作用下的"截面能力/需求比"高达180.4%,这说明设计基本烈度地震荷载作用下,固定墩的强度已不能满足。因此,"中震可修"的要求也难以保证。

盆式橡胶支座在橡胶轴承的基础上,进一步改进后的更完美的橡胶轴承。盆式橡胶支座变形机制:

对结构进行非线性时程反应分析。计算结果均以一幅计。

  (7)支座中心线应该与主梁中心线重合或平行,单向活动支座安装时,顶板导向块和中间钢板的导向滑调应该保持平行,交叉角度不大于5‘。

在TPZ15000-双盆式橡胶支座的纵桥向加限定钢挡板,用承压型高强螺栓使之与支座顶板连接,并提供约束反力。这样,在正常使用极限状态和矿地震荷载作用下,支座不滑动,承受汽车制动力和~定的地震荷载。当地震水平力逐渐增加,大于螺栓设计荷载时,支座螺栓被剪断,滑动面开始相对滑移。在支座上100mm处设置抗震挡块,以限制支座顶板与底盆的相对位移。

2,水平力:一个纵向水平力制动力——从上部结构,风荷载。水平力——离心力从上部结构,风荷载。3,桥梁抗震区:根据设计地震烈度,根据规格和组合计算。2,设计和计算的板式橡胶支座的板式橡胶支座的设计计算包括确定橡胶轴承,橡胶支座压缩检查偏转和校核计算抗滑稳定橡胶轴承。

本文在进行抗震验算时,该桥主体方案已经确定,并已经开始施工。在这种情况下,在不增加工程造价的前提下,采用了第一种方案,即对原有的固定支座进行了再设计,引入减隔震概念,以使其满足设计要求。

盆式橡胶支座是由上座板、密封圈、橡胶板、底盆、地脚螺栓和防尘罩等组成的。

对固定墩的钢筋混凝土截面进行弯短一曲率关系分析,得到其纵向反应及屈服弯矩。

广东十一选五官网 3

下面是本网给大家带来关于减隔震设计的相关内容,以供参考。

采取减隔震措施后,在遭遇到地震时,桥梁的主体结构并没有破坏,只需在震后对支座的高强螺栓和锚固钢挡板进行更换,从而既满足了桥梁"小震不坏、中震可修、大震不?quot;的设计要求,又为实际工程人员所接受,不失为一种切实可行的办法。

设计单位设计的盆式支座布置情况为(以一幅计):两边墩分别设置两个TPZ3000-ZX型盆式橡胶支座,固定墩设置两个TPZ15000-GDZ型盆式橡胶支座,余主墩上皆各设两个TPZ15000-ZX型盆式橡胶支座。

3.结果分析

TPZ15000一GDZ型盆式橡胶支座为抗震型支座,其竖向承载力为15000kN,可承受的最大水平力为15000X20%=3000kN,故固定墩墩顶所能承受的最大水平力为6000kN。

考虑到桥墩基础为钻孔灌注桩,墩底位移相对较小,将桥墩固结在墩底会增大结构内力反应,故而适当放大结构周期,将墩延长约3倍桩径固结。桥墩依线弹性梁单元来处理。计算中对活动支座考虑其非线性效应,用非线性支座单元处理。采用Ⅳ类场地人工波作为输入地震波,依Eurocode8对地震波进行三个方向组合,以纵桥向为验算主方向。设计基本烈度为7度。

梁体的纵向位移及梁、墩的相对位移虽然有所增大,但位移幅度仍在支座的允许范围内;

7度和8度地震荷载作用下,截面的能力/需求比大于1,表明固定墩墩底截面发生塑性变形,即,在承受一定的轴力作用时,截面所承受的弯矩超过截面屈服弯矩,进入了非线性工作阶段。

利用自编程序对该桥进行分析,6度地震荷载作用下,固定墩墩底截面的内力。

将原有支座改为符合承载力要求的抗震型橡胶支座;

8度地震荷载作用下,固定墩的剪力及弯矩均有大幅度的下降,其中剪力仅为改造前的95.42%,弯矩为改造前的93.56%,这使得桥墩的安全系数大大提高。同时,主梁的纵向位移及梁。墩的相对位移有所增大,梁体的最大正向位移为81.4mm,最大负向位移为13.2mm,但位移幅度仍在支座的允许滑动范围(±100mm)以内。

采用柔性支承,以延长结构的自振周期,从而减小结构由于地震引起的内力反应;

本文以某五跨连续梁桥为工程背景,该桥跨径组合为49.90 3X80.00 49.90。桥址的土质(在地表以下20.0m范围内)为淤泥、淤泥质亚粘土、粘土和细砂,地基容许承载力[σ0]<130kPa。根据《公路工程抗震设计规范》(JTJ004-89)第4.2.2条规定,确定该桥场地类别为Ⅳ类场地上。

在全桥变为纵桥向滑动时,将连续梁简化为只有7个自由度的平面结构。

在正常使用极限状态和地震荷载作用下,固定墩仍处于弹性受力状态,受力性能得到明显改善;

6度地震荷载作用下,固定墩墩顶所承受的水平力为6455kN,大于其上固定支座所能承受的最大水平力,固定支座被剪坏。

2.验算结果

本文根据减隔振原理对连续梁桥的固定支座进行了减隔震设计,结果表明:

以往在进行抗震设计时,设计师总是过多地强调强度要求,希望采用的支座可以满足最大的地震荷载。可是,地震荷载具有很大的偶然性和随机性,正常使用极限状态下桥墩所承受的荷载与设计地震荷载时桥墩的受力相比是很小的,以本桥为例仅占3.23%。由此可见,若以设计地震荷载来控制桥墩及支座的设计,在经济上要增加很高的投入,同时桥墩也处于十分不利的受力状态。

考虑到桥墩在正常使用极限状态下的安全性,采用18个螺栓。螺栓的实际极限承载能力为168.82X18=3038.76kN,小于设计控制值6.84%。

3.方案验算

具有足够的刚度和强度,以支承正常使用极限状态下的水平力(如风荷载、汽车制动力等)。

本文由广东11选5代理发布于广东十一选五官网,转载请注明出处:桥梁JPZ盆式固定橡胶支座常用规格广东十一选五