能量密度280Wh/kg24M交付半固态电瓶_新能源小车网

湿化学法的局限性

能量密度280Wh/kg24M交付半固态电池

其次,添加更多的锂可以补偿随着时间的推移而消耗掉的锂,因为SEI会随着电荷循环以微小的速度继续增长。因此,添加一点锂可能意味着增加电池寿命。

芬兰电池公司BroadBit Batteries正与IWS合作,在其艾斯波工厂启动了试点工厂,该工厂使用干电极材料而不是湿的糊状物覆盖电极。BroadBit公司正采用该工艺生产新型钠离子电池。在实验室中,IWS已经可以每分钟涂覆数米的电极箔,展示了该技术可转化成量产工艺的潜力。

2019-03-05来源:汽车之家

据报道,位于美国马萨诸塞州的半固态电池研发公司24M近日对外宣布,公司已向一家未公开名称的工业合作伙伴以及美国能源部附属公司美国先进电池联盟(Advanced Battery Consortium)交付了首批半固态锂电池,这些电池的能量密度达到280Wh/kg,高于250Wh/kg的行业标准。该电池使用镍锰钴配方,并具有商业可行性。

24M首席执行官Rick Feldt表示,新型半固体电池的电极为低成本,为高能量密度锂电池进一步应用奠定了基础;此外,其电解质可作为处理溶剂,减少了如干燥、溶剂回收、压延和电解质填充等步骤;还可实现差异化电池设计,减少昂贵的非活性材料等的使用;而且在无粘合剂浆料混合过程中加入电解质,也为高能量密度电池的设计提供了独特的方法。

24M公司在其网站上表示,其电池成本是传统电池成本的一半。“通过开发和交付这些高能量密度电池,代表着24M可以将技术从实验室转化为创新产品,这令我们非常兴奋”。24M首席技术官Naoki Ota在一份书面声明中表示,“此外,我们能够利用我们的新型电极和制造方法制造出超过280Wh/kg的电池,这是向性能领先、成本低的锂离子电池领域迈出的重要一步。”

24M成立于2010年,主要致力于半固态锂电池的研发和生产,2016年与美国先进电池联盟签订了为期3年700万美元(约合人民币4694万元)的合同,由美国能源部资助。该研究的目标是到2019年底开发出能量密度为350Wh/kg的电池,该目标已在实验室中实现。

此外,24M还在开发另一种不同的解决方案,可以使电池的能量密度达到接近500Wh/kg.2018年12月,24M宣布已在日本公司Kyocera Group和Itochu领导的D轮融资中筹集了2180万美元(约合人民币1.46亿元),并表示正在推进基于其技术生产电池的多家工厂的计划。

广东11选5代理 1

目前为止,大多数电池生产商都通过复杂的湿化学工艺给电池电极涂覆涂层。首先,他们会将活性物质与添加剂混合,制成糊状。在该过程中,添加的有机溶剂非常昂贵而且通常有毒。一旦糊状物涂覆在薄金属箔上,一个更昂贵的工艺步骤就开始了:要将几十米长的金属箔上的涂膜烘干,然后再进行进一步加工,而干燥过程会产生昂贵的用电成本。

如果特斯拉使用Maxwell工艺和专利实现了更好、更低成本的电池工艺,那么就会出现一个有趣的问题,特斯拉会向整个行业分享出技术细节吗?

将分子结合形成蛛网

而最关键的是Maxwell的工艺使电池的负极和正极不使用溶剂。

目前,工程师们旨在通过与工业合作伙伴合作,增强技术,达到突破。例如,研究人员还在与Saueressig、INDEV、Netzsch Trockenmahltechnik和Broad-Bit Batteries等公司合作,以进一步研发干燥转移涂层工艺。Benjamin Schumm表示,长期来看,该工艺具备极大地潜力,可替代传统的基于糊状物的电极生产工艺。

但Maxwell的工艺不使用溶剂。顺便提一下,Maxwell有一项待审专利,专利内容正是用干法将锂金属添加到负极,补偿第一次循环的容量损失......

目前,对更好、更经济的储能生产方式的需求正不断上涨,特别是在德国,所有主流汽车制造商都推出了雄心勃勃的电动汽车计划,也将导致电池的需求大幅上涨。目前为止,德国公司都一直从亚洲购买电池,原因在于:首先,亚洲科技集团在量产电池方面拥有多年经验;另一方面,德国等地电价很高,因而生产电池的成本很高。

Maxwell的超级电容本身似乎对特斯拉电池性能的提高暂时不会有立竿见影的作用,但Maxwell用于制造超级电容器的专利工艺可以大大降低特斯拉(或松下?)的电池制造成本。此外,由于这是一种干电极制造工艺,可以添加额外的锂,特斯拉/松下电池的容量和循环寿命都可能会提高。

芬兰的试验工厂正式投产

为了充分理解在电极制造中不使用溶剂的重要性,就需要了解整个锂电池的制造方法。

Benjamin Schumm表示:“如此一来,我们能够加工新一代电池的材料,此类材料可能无法使用传统工艺加工。”例如,使用硫作为活性材料的储能系统,或是使用离子导电固体而不是易燃液体电解质的固态电池。IWS科学家表示,此类电池与现在的锂离子电池相比,在相同的体积下,能够存储更多能量。但是,此类固态电解质在与溶剂接触时会失去其功能性特征。无溶剂的涂层工艺明显更适合生产此类储能介质,在处理固态电池电解质的过程中,研究人员通过使用粘合剂含量极低的干膜技术,达到了重要的里程碑。

解决方案似乎只需添加额外的锂来弥补用于形成SEI的缺口部分。这似乎只是一个小问题,添加的锂必须是锂金属,或者将锂添加到负极的石墨中。但在有溶剂的情况下,锂金属和与混有锂金属的碳不能很好地彼此融合,通常都伴随着烟雾、火苗和噪音等强烈反应。因此,第一次循环容量损失的问题一直没有得到很好的解决。

这正是弗劳霍恩夫研究人员想要改变的事实:“我们的干燥转移涂层工艺旨在显著降低电极涂层的工艺成本。” Benjamin Schumm博士表示:“电池制造商不再需要有毒且昂贵的溶剂,并且干燥涂层工艺还节省了能源成本。此外,我们的技术还促进了电极材料的使用,此类材料很难甚至不可能用湿化学法进行处理,但是此类材料却是未来生产更高能量密度电池所必须的。”

随着高尔夫球继续重新排列穿过狭槽,高尔夫球最终与口香糖的原纤维连在一起。这就是对Maxwell工艺的大致描述。然后将负极和正极材料的薄膜层压到金属箔集电体上制备负极和正极,正极和负极之间用隔膜卷绕制成电池的卷芯。

该工艺也可替代传统的涂覆糊状物的工艺

Maxwell的工艺皆适用于正极和负极。用NCA粉末和铝箔制作正极,用石墨粉和铜箔制作负极。另外,还为Teflon添加了一些不同的聚合物,获得了更好的强度和离子传输,添加一些其他材料可以提高导电性。通过将电极膜卷绕成卷,然后送入层压机。但这个过程其实非常非常简单。

通往固态防火电池之路

正极材料很重,大约是其中锂含量的20倍。在完全充电的锂电池中,大部分锂已从正极材料中移动并储存在负极的石墨中。随着电池放电,锂返回到正极,锂离子嵌入到正极中,回到金属氧化物晶体中。当负极消耗完锂,或正极充满锂且不能再接受更多时,电池就已完全放电。

据外媒报道,德国德累斯顿弗劳恩霍夫材料与射线研究所研究人员研发了一种新型生产工艺,可在未来实现高效、环保电池的生产。研究人员给储能电池的电极涂上了一层干膜,而不是液体化学物质,该过程可节省能源,消除有毒溶剂。目前,芬兰一家公司正在测试该项新技术。

添加额外的锂有两个好处。首先,少量添加的锂可以弥补在初始充电时形成SEI所消耗的锂,从而减少第一次循环容量损失。这就意味着更高的电池容量与能量密度。

不再具有有毒溶剂 – 电力成本更低

结论

另一方面,干燥转移涂层工艺技术在操作上不会有破坏生态且价格昂贵的工艺步骤,IWS工程师将活性材料与结合性聚合物混合,再在一个叫做“ 砑光机”的轧机上加工此干燥混合物。该体系中的剪切力会将整个分子链从粘合剂聚合物中撕裂出来,撕裂出来的“纤维丝”与电极颗粒结合,就像蜘蛛网一样,从而会让电极材料具有稳定性,并形成一个灵活的干燥电极材料层。接下来, 砑光机直接将100微米厚的薄膜层压在铝箔上,从而生产出电池电极。

特斯拉收购Maxwell的一项重要技术理由可以归结为“原纤维化(Fibrilization)”。这是什么意思呢?举个例子,在炎热的天气下,鞋底不小心黏到了口香糖,当你抬脚继续向前迈步时,就会使黏到鞋底的口香糖“纤维化”。所有那些将将鞋底连接到人行道上的粘性物质称为原纤维(Fibrils)。

广东11选5代理 2

通常锂离子电池处于很低的电量状态时,当暴露在空气中时它们不会有剧烈反应。正极材料、既锂化金属氧化物会完全锂化,而负极不含任何锂。这意味着所有锂离子(除了在电池末端添加的电解质中的少量锂离子)都在正极材料内。

能量密度280Wh/kg24M交付半固态电瓶_新能源小车网广东11选5代理。Maxwell已将这种工艺用于制造超级电容。使用这个简单的过程,制造电池的成本支出将会少得多,且不使用溶剂。

将挤出的电极材料带层压到金属箔集电体上形成成品电极。过程如下面草图。

更高的能量密度

那么Maxwell的干电极技术到底神在哪儿呢?

Maxwell的干电极工艺通过将混入活跃的负极或正极材料颗粒的PTFE(Teflon)原纤维化,形成负极或正极材料的自支撑膜(self supporting film)。我们可以把Maxwell的这个工艺想象成一个装满高尔夫球和口香糖的大水箱,水箱底部有一个窄口的二维漏斗。当高尔夫球的重量通过槽将高尔夫球和口香糖片推到底部时,高尔夫球之间相互推动、滑动和滚动,偶尔会有一些口香糖被挤压。

前段时间不断有些传闻说松下可能计划削减对Giga 1的资本支出,有些人认为这是松下失去了对特斯拉销量信心的证据。而通过这篇文章,另一个更有趣的解释可能是,松下认为现有工艺可能会因技术迭代即将过时,继续投资会面临不小的风险。因此可密切关注特斯拉与松下之间的关系动向。

这里存在一些问题。当电池充满电解质且进行第一次充电时,正极材料的一些锂离子会被负极、电解质和锂离子之间的反应消耗掉。这种寄生反应形成SEI(Solid Electrolyte Interphase,固体电解质界面)。SEI是电池的重要组成部分,因为它可以防止电解质与负极中的碳反应。问题在于,一旦进行第一次充电,在放电过程中从负极返回正极的锂离子就会损失一些。结果导致了“第一次循环容量损失”,这种现象在所有常见类型的锂离子电池中很普遍。第一次循环容量损失真正重要的原因是用于形成SEI的锂成为了锂化正极材料的一部分,因此电池在生命周期内总是带着一堆永远不会被使用的很重的正极材料,因为它最初包含的一些锂在SEI中被束缚住了。

传统的锂电池制造使用有粘合剂材料的溶剂,NMP(N-Methyl-2-pyrrolidone)是其中一种常见溶剂。将具有粘合剂的溶剂与负极或正极粉末混合后,把浆料涂在电极集电体上并干燥。溶剂有毒,必须小心回收,进行纯化和再利用。而且需要巨大、昂贵且复杂的电极涂覆机。下图就是若干年前特斯拉Giga 1正在建造的这种机器。

原纤维化(Fibrilization)

特斯拉已完成对Maxwell的收购,该公司之前更多主要从事超级电容的开发与应用。然而,近期大部分业界媒体已经注意到特斯拉对Maxwell的兴趣可能更多与他们的干电极技术有关。

Maxwell干电极工艺更简单,不使用溶剂,它提供了一个重要但不那么明显的优势。该过程从电极粉末开始,比如说特斯拉的NCA正极的锂镍钴氧化铝粉末。将少量(约5-8%)细粉状PTFE粘合剂与正极粉末混合。然后将混合的正极 粘合剂粉末通过挤压机形成薄的电极材料带。

本文由广东11选5代理发布于广东11选5代理,转载请注明出处:能量密度280Wh/kg24M交付半固态电瓶_新能源小车网